Optimization Online


Mosco stability of proximal mappings in reflexive Banach spaces

Dan Butnariu (dbutnaru***at***math.haifa.ac.il)
Elena Resmerita (elena.resmerita***at***oeaw.ac.at)

Abstract: In this paper we establish criteria for the stability of the proximal mapping \textrm{Prox} $_{\varphi }^{f}=(\partial \varphi +\partial f)^{-1}$ associated to the proper lower semicontinuous convex functions $\varphi $ and $f$ on a reflexive Banach space $X.$ We prove that, under certain conditions, if the convex functions $\varphi _{n}$ converge in the sense of Mosco to $\varphi $ and if $\xi _{n}$ converges to $\xi ,$ then \textrm{Prox} $_{\varphi _{n}}^{f}(\xi _{n})$ converges to \textrm{Prox} $_{\varphi }^{f}(\xi ).$

Keywords: Bregman distance, Legendre function, modulus of total convexity, Mosco convergence of a sequence of functions, proximal mapping relative to a convex function, relative projection onto a convex set, uniformly convex function

Category 1: Convex and Nonsmooth Optimization (Convex Optimization )

Citation: preprint, 2006

Download: [PDF]

Entry Submitted: 04/25/2006
Entry Accepted: 04/25/2006
Entry Last Modified: 04/25/2006

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society