  


Mosco stability of proximal mappings in reflexive Banach spaces
Dan Butnariu (dbutnarumath.haifa.ac.il) Abstract: In this paper we establish criteria for the stability of the proximal mapping \textrm{Prox} $_{\varphi }^{f}=(\partial \varphi +\partial f)^{1}$ associated to the proper lower semicontinuous convex functions $\varphi $ and $f$ on a reflexive Banach space $X.$ We prove that, under certain conditions, if the convex functions $\varphi _{n}$ converge in the sense of Mosco to $\varphi $ and if $\xi _{n}$ converges to $\xi ,$ then \textrm{Prox} $_{\varphi _{n}}^{f}(\xi _{n})$ converges to \textrm{Prox} $_{\varphi }^{f}(\xi ).$ Keywords: Bregman distance, Legendre function, modulus of total convexity, Mosco convergence of a sequence of functions, proximal mapping relative to a convex function, relative projection onto a convex set, uniformly convex function Category 1: Convex and Nonsmooth Optimization (Convex Optimization ) Citation: preprint, 2006 Download: [PDF] Entry Submitted: 04/25/2006 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  