Optimization Online


Copositive programming motivated bounds on the stability and the chromatic number

Igor Dukanovic (igor.mat***at***uni-mb.si)
Franz Rendl (franz.rendl***at***uni-klu.ac.at)

Abstract: The Lovasz theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovasz theta number toward the chromatic number of G, which is shown to be equal to the fractional chromatic number of G. Solving copositive programs is NP-hard. This motivates the study of tractable approximations of the copositive cone. We investigate the Parrilo hierarchy to approximate this cone and provide computational simplifications for the approximation of the chromatic number of vertex transitive graphs. We provide some computational results indicating that the Lovasz theta number can be strengthened significantly toward the fractional chromatic number of G on some Hamming graphs.

Keywords: copositive programming, semidefinite programming, (fractional) chromatic number, Lovasz theta number

Category 1: Combinatorial Optimization (Graphs and Matroids )

Category 2: Linear, Cone and Semidefinite Programming

Citation: Preprint. University of Klagenfurt, 2006.


Entry Submitted: 05/30/2006
Entry Accepted: 05/30/2006
Entry Last Modified: 04/16/2008

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society