-

 

 

 




Optimization Online





 

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

Mihai Anitescu (anitescu***at***mcs.anl.gov)

Abstract: We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. We demonstrate that our framework is applicable to one-dimensional parametric eigenvalue problems and that the resulting method is superior in both accuracy and speed to black-box approaches.

Keywords: spectral approximations, orthogonal polynomials, parametric problems, stochastic finite element, constrained optimization.

Category 1: Nonlinear Optimization (Constrained Nonlinear Optimization )

Category 2: Stochastic Programming

Category 3: Applications -- Science and Engineering (Mechanical Engineering )

Citation: Preprint ANL/MCS-P1379-1006 Argonne National Laboratory, Mathematics and Computer Science Division, 9700 S Cass Avenue, Argonne IL, 60439, USA, October, 2006

Download: [Postscript][PDF]

Entry Submitted: 11/30/2006
Entry Accepted: 11/30/2006
Entry Last Modified: 11/30/2006

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society