Optimization Online


A Short Note on the Probabilistic Set Covering Problem

Anureet Saxena(anureet***at***cmu.edu)

Abstract: In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development Saxena, Goyal and Lejeune proposed a MIP reformulation of (PSC) and reported extensive computational results with small and medium sized (PSC) instances. Their reformulation, however, suffers from the curse of exponentiality - the number of constraints in their model can grow exponentially rendering the MIP reformulation intractable for all practical purposes. In this paper, we give a polynomial-time algorithm to separate the (possibly exponential sized) constraint set of their MIP reformulation. Our separation routine is independent of the specific nature (concave, convex, linear, non-linear etc) of the distribution function of xi, and can be easily embedded within a branch-and-cut framework yielding a distribution-free algorithm to solve (PSC). The resulting algorithm can solve (PSC) instances of arbitrarily large block sizes by generating only a small subset of constraints in the MIP reformulation and verifying the remaining constraints implicitly. Furthermore, the constraints generated by the separation routine are independent of the coefficient matrix A and cost-vector c thereby facilitating their application in sensitivity analysis, re-optimization and warm-starting (PSC). We give preliminary computational results to illustrate our findings on a test-bed of 40 (PSC) instances created from the OR-Lib set-covering instance scp41.

Keywords: Probabilistic Programming, Set Covering, Mixed Integer Programming, Cutting Planes.

Category 1: Stochastic Programming

Category 2: Integer Programming (0-1 Programming )

Category 3: Integer Programming (Cutting Plane Approaches )

Citation: Tepper Working Paper 2007-E9, Carnegie Mellon University.

Download: [Postscript][PDF]

Entry Submitted: 03/15/2007
Entry Accepted: 03/15/2007
Entry Last Modified: 03/15/2007

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society