-

 

 

 




Optimization Online





 

Monotonicity of L\"{o}wner Operators and Its Applications to Symmetric Cone Complementarity Problems

Lingchen Kong(konglchen***at***126.com)
Levent Tuncel(ltuncel***at***math.uwaterloo.ca)
Naihua Xiu(nhxiu***at***bjtu.edu.cn)

Abstract: This paper focuses on monotone L\"{o}wner operators in Euclidean Jordan algebras and their applications to the symmetric cone complementarity problem (SCCP). We prove necessary and sufficient conditions for locally Lipschitz L\"{o}wner operators to be monotone, strictly monotone and strongly monotone. We also study the relationship between monotonicity and operator-monotonicity of L\"{o}wner operators. As a by-product of our results, we establish a new class of C-functions for SCCP, which is an extension of the Mangasarian class of NCP-functions for the nonlinear complementarity problem, and present some characterizations of the C-functions for SCCP under certain assumptions.

Keywords: L\"{o}wner operator, Euclidean Jordan algebra, Monotonicity, Symmetric cone complementarity problem, C-function

Category 1: Complementarity and Variational Inequalities

Category 2: Convex and Nonsmooth Optimization (Generalized Convexity/Monoticity )

Category 3: Linear, Cone and Semidefinite Programming (Semi-definite Programming )

Citation: 1 Bhatia, R. 1997. \textit{Matrix Analysis}. Springer. New York. 2 Chen., J.-S. 2006. The convex and monotone functions associated with second-order cone. \textit{Optimization} 55 363-385. 3 Chen, J.-S., X. Chen, P. Tseng. 2004. Analysis of nonsmooth vector-valued functions associated with second-order cones. \textit{Math. Program.} 101 95-117. 4 Chen, X., H. Qi, P. Tseng. 2003. Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems. \textit{SIAM J. Optim.} 13 960-985. 5 Chen, X., P. Tseng. 2003. Non-interior continuation methods for solving semidefinite complementarity problems. \textit{Math. Program. Ser. A} 95 431-474. 6 Faraut, J., A. Kor\'{a}nyi. 1994. \textit{Analysis on Symmetric Cones}. Oxford University Press, New York. 7 Faybusovich, L. 1997. Euclidean Jordan algebras and interior-point algorithms. {\it Positivity} 1 331-357. 8 Faybusovich, L. 1997. Linear systems in Jordan algebras and primal-dual interior point algorithms. \textit{J. Comput. Appl. Math.} 86 149-175. 9 Facchinei, F., J.-S. Pang. 2003. \textit{Finite-Dimensional Variational Inequalities and Complementarity Problems}. Volume I and II. Springer-Verlag, New York. 10 Fischer, A. 1997. Solution of monotone complementarity problems with locally Lipschitzian functions. \textit{Math. Program.} 76 513-532. 11 Gowda, M.S., R. Sznajder,J. Tao. 2004. Some $P$-properties for linear transformations on Euclidean Jordan algebras. {\it Linear Algebra and Its Applications} 393 203-232. 12 Gowda, M.S., R. Sznajder. 2006. Automorphism invariance of P and GUS properties of linear transformations on Euclidean Jordan algebras. {\it Math. Oper. Res.} 31 109-123. 13 Gowda, M.S., J. Tao. 2006. Z-transformation on proper and symmetric cone. Preprint, University of Maryland at Baltimore County. 14 Hadjisavvas, N., S. Koml\'{o}si, S. Schaible. eds. 2005. \textit{Handbook of generalized convexity and generalized monotonicity}. Springer, New York. 15 Horn, R.A. C.R. Johnson. 1991. \textit{Topics in Matrix Analysis}. Cambridge University Press, Cambridge. 16 Huang, Z.H., T. Ni. 2007. Coerciveness of a smoothing function for complementarity problems over symmetric cones with applications. Preprint, Department of Mathematics, Tianjin University, P.R. China. 17 Isac, G. 2000. \textit{Topological Methods in Complementarity Theory.} Kluwer Academic Publishers, Dordrecht. 18 Jeyakumar, V., D.T. Luc, S. Schaible. 1998. Characterizations of generalized monotone nonsmooth continuous maps using approximate Jacobians. {\it Journal of Convex Analysis} 5(1) 119-132. 19 Kachurovskii, R.I. 1960. On monotone operators and convex functionals. {\it Uspekhi Matematicheskikh Nauk (N.S.)} 15 213-215. 20 Koecher, M. 1999. \textit{The Minnesota Notes on Jordan Algebras and Their Applications}. edited and annotated by Brieg, A., Walcher, S., Springer, Berlin. 21 Kor\'{a}nyi, A. 1984. Monotone functions on formally real Jordan algebras. {\it Math. Ann.} 269 73-76. 22 Kong, L.C., J. Sun, N.H. Xiu. 2006. A regularized smoothing Newton method for symmetric cone complementarity problems. Technical Report, Department of Applied Math., Beijing Jiaotong University, Beijing. 23 Kong, L.C., N.H. Xiu. 2007. On uniqueness of the Jordan frame in Euclidean Jordan algebras. \textit{Journal of Beijing Jiaotong University}, Online. 24 Kong, L.C., N.H. Xiu. 2006. New smooth C-functions for symmetric cone complementarity problems. {\it Optimization Letters}, Online. 25 Lin, Y., A. Yoshise. 2005. A homogeneous model for mixed complementarity problems over symmetric cones. Preprint, University of Tsukuba, Japan. 26 Liu, Y., L. Zhang, Y. Wang. 2006. Some properties of a class of merit functions for symmetric cone complementarity problems. {\it Asia-Pacific Journal of Operational Research} 23 473-496. 27 L\"{o}wner, K. 1934. \"{U}ber monotone matrixfunctionen. \textit{ Mathematische Zeitschrift} 38 177-216. 28 Luc, D.T., S. Schaible. 1996. On generalized monotone nonsmooth maps. \textit{Journal of Convex Analysis} 3 195-205. 29 Luo, Z.Q., J.-S. Pang, D. Ralph. 1996. \textit{Mathematical Programs with Equilibrium Constraints.} Cambridge University Press, Cambridge. 30 Malik, M., S.R. Mohan. 2003. On complementarity problems over symmetric cones. Discussion Paper Series DPS/SQCOR/Delhi/05-2003, Indian Statistical Institute. 31 Malik, M., S.R. Mohan. 2006. Cone complementarity problems with finite solution sets. {\it Operations Research Letters} 34 121-126. 32 Mangasarian, O.L. 1976. Equivalence of the complementarity problem to a system of non-linear equations. \textit{SIAM Journal on Applied Mathematics} 31 89-92. 33 Mifflin, R. 1977. Semismooth and semiconvex functions in constrained optimization. \textit{SIAM J. Cont. Optim.} 15 957-972. 34 Pang, J.-S., D. Sun, J. Sun. 2003. Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. \textit{Math. Oper. Res.} 28 39-63. 35 Qi, L., J. Sun. 1993. A nonsmooth version of Newton's method. \textit{Math. Program.} 58 353-367. 36 Rockafellar, R.T., R.J.-B. Wets. 2004. \textit{Variational Analysis}. Second Version. Springer, New York. 37 Schmieta, S.H., F. Alizadeh. 2001. Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. {\it Math. Oper. Res.} 26 543-564. 38 Schmieta, S.H., F. Alizadeh. 2003. Extension of primal-dual interior point algorithms to symmetric cones. {\it Math. Program.} 96 409-438. 39 Springer, T.A. 1973. \textit{Jordan-Algebras and Algebraic Groups}. Springer. New York. 40 Sun, D., J. Sun. 2005. Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. \textit{ Math. Program. Ser. A} 103 575-581. 41 Sun, D., J. Sun. 2004. L\"{o}wner's operator and spectral functions on Euclidean Jordan algebras. \emph{Technical Report}, Department of Mathematics, National University of Singapore, Singapore. 42 Sturm, J.F. 2000. Similarity and other spectral relations for symmetric cones. {\it Linear Algebra and its Applications} 312 135-154. 43 Tao, J., M.S. Gowda. 2005. Some $P$-properties for nonlinear transformations on Euclidean Jordan algebras. {\it Math. Oper. Res.} 30 985-1004. 44 Tseng, P. 1998. Merit function for semi-definite complementarity problems. {\it Math. Program.} 83 159-185. 45 Yoshise, A. 2006. Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. \textit{SIAM J. Optim.} 17 1129-1153.

Download: [PDF]

Entry Submitted: 04/16/2007
Entry Accepted: 04/17/2007
Entry Last Modified: 04/16/2007

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society