Optimization Online


Pareto Optima of Multicriteria Integer Linear Programs

Jesús A. De Loera(deloera***at***math.ucdavis.edu)
Raymond Hemmecke(hemmecke***at***imo.math.uni-magdeburg.de)
Matthias Köppe(mkoeppe***at***imo.math.uni-magdeburg.de)

Abstract: We settle the computational complexity of fundamental questions related to multicriteria integer linear programs, when the dimensions of the strategy space and of the outcome space are considered fixed constants. In particular we construct: 1. polynomial-time algorithms to exactly determine the number of Pareto optima and Pareto strategies; 2. a polynomial-space polynomial-delay prescribed-order enumeration algorithm for arbitrary projections of the Pareto set; 3. an algorithm to minimize the distance of a Pareto optimum from a prescribed comparison point with respect to arbitrary polyhedral norms; 4. a fully polynomial-time approximation scheme for the problem of minimizing the distance of a Pareto optimum from a prescribed comparison point with respect to the Euclidean norm.

Keywords: multiobjective optimization; integer programming; complexity in fixed dimension

Category 1: Integer Programming (Other )

Category 2: Other Topics (Multi-Criteria Optimization )


Download: [PDF]

Entry Submitted: 07/10/2007
Entry Accepted: 07/10/2007
Entry Last Modified: 07/10/2007

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society