Optimization Online


l_1 Trend Filtering

Seung-Jean Kim (sjkim***at***stanford.edu)
Kwangmoo Koh (deneb1***at***stanford.edu)
Stephen Boyd (boyd***at***stanford.edu)
Dimitry Gorinevsky (gorin***at***stanford.edu)

Abstract: The problem of estimating underlying trends in time series data arises in a variety of disciplines. In this paper we propose a variation on Hodrick-Prescott (H-P) filtering, a widely used method for trend estimation. The proposed l_1 trend filtering method substitutes a sum of absolute values (i.e., l_1-norm) for the sum of squares used in H-P filtering to penalize variations in the estimated trend. The l_1 trend filtering method produces trend estimates that are piecewise linear, and therefore is well suited to analyzing time series with an underlying piecewise linear trend. The kinks, or changes in slope, of the estimated trend can be interpreted as abrupt changes or events in the underlying dynamics of the time series. Using specialized interior-point methods, l_1 trend filtering can be carried out with not much more effort than H-P filtering; in particular, the number of arithmetic operations required grows linearly with the number of data points. We describe the method, some of its basic properties, and give some illustrative examples. We show how the method is related to l_1 regularization based methods in sparse signal recovery and feature selection, and list some of extensions of the basic method.

Keywords: detrending, l_1 regularization, Hodrick-Prescott filtering, piecewise linear fitting, sparse signal recovery, feature selection, time series analysis, trend estimation

Category 1: Applications -- Science and Engineering (Statistics )

Category 2: Convex and Nonsmooth Optimization (Other )

Category 3: Other Topics (Other )


Download: [PDF]

Entry Submitted: 09/29/2007
Entry Accepted: 09/29/2007
Entry Last Modified: 09/29/2007

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society