  


Constraint Orbital Branching
James Ostrowski(jao204lehigh.edu) Abstract: Orbital branching is a method for branching on variables in integer programming that reduces the likelihood of evaluating redundant, isomorphic nodes in the branchandbound procedure. In this work, the orbital branching methodology is extended so that the branching disjunction can be based on an arbitrary constraint. Many important families of integer programs are structured such that small instances from the family are embedded in larger instances. This structural information can be exploited to define a group of strong constraints on which to base the orbital branching disjunction. The symmetric nature of the problems is further exploited by enumerating nonisomorphic solutions to instances of the small family and using these solutions to create a collection of typically easytosolve integer programs. The solution of each integer program in the collection is equivalent to solving the original large instance. The effectiveness of this methodology is demonstrated by computing the optimal incidence width of Steiner Triple Systems and minimum cardinality covering designs. Keywords: Integer programming; symmetry; branchandbound Category 1: Integer Programming Category 2: Applications  Science and Engineering (Statistics ) Citation: Download: [PDF] Entry Submitted: 01/01/2008 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  