Optimization Online


Size constrained graph partitioning polytope. Part I: Dimension and trivial facets

F. Aykut Özsoy (fozsoy***at***ulb.ac.be)
Martine Labbé (mlabbe***at***ulb.ac.be)

Abstract: We consider the problem of clustering a set of items into subsets whose sizes are bounded from above and below. We formulate the problem as a graph partitioning problem and propose an integer programming model for solving it. This formulation generalizes several well-known graph partitioning problems from the literature like the clique partitioning problem, the equi-partition problem and the k-way equi-partition problem. In this paper and its sequel, we analyze the structure of the corresponding polytope and prove several results concerning the facial structure. Our analysis yields important results for the closely related equi-partition and k-way equi-partition polytopes as well.

Keywords: graph partitioning polytope, clique partitioning, k-way equi-partition, equi-partition, integer programming, polyhedra

Category 1: Combinatorial Optimization (Polyhedra )

Category 2: Integer Programming (0-1 Programming )

Citation: Technical Reports of the ULB Computer Science Department, Number 577, Brussels, Belgium, August 2007.

Download: [PDF]

Entry Submitted: 01/08/2008
Entry Accepted: 01/09/2008
Entry Last Modified: 01/09/2008

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society