-

 

 

 




Optimization Online





 

THE EKELAND VARIATIONAL PRINCIPLE FOR HENIG PROPER MINIMIZERS AND SUPER MINIMIZERS

Xuan Duc Ha Truong (txdha***at***math.ac.vn)

Abstract: In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F with values in a partially ordered vector space and formulate two versions of the Ekeland variational principle for these points involving coderivatives in the senses of Ioffe, Clarke and Mordukhovich. As applications we obtain sufficient conditions for F to have a Henig proper minimizer or a super minimizer under the Palais-Smale type conditions. The techniques are essentially based on characterizations of Henig proper efficient points and super efficient points by mean of the Henig dilating cones and the Hiriart-Urruty signed distance function.

Keywords: Ekeland variational principle, vector optimization, Henig proper minimizer, super minimizer, Henig dilating cone, cone with base, set-valued map, coderivative

Category 1: Other Topics (Multi-Criteria Optimization )

Category 2: Convex and Nonsmooth Optimization (Nonsmooth Optimization )

Citation: J. Math. Anal. Appl. 364 (2010), 156-170.

Download:

Entry Submitted: 12/15/2008
Entry Accepted: 12/16/2008
Entry Last Modified: 08/01/2010

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society