Optimization Online


Interior Proximal Algorithm with Variable Metric for Second-Order Cone Programming: Applications to Structural Optimization and Support Vector Machines

Felipe Alvarez(falvarez***at***dim.uchile.cl)
Julio López(jclopez***at***dim.uchile.cl)
Hector Ramírez(hramirez***at***dim.uchile.cl)

Abstract: In this work, we propose an inexact interior proximal type algorithm for solving convex second-order cone programs. This kind of problems consists of minimizing a convex function (possibly nonsmooth) over the intersection of an affine linear space with the Cartesian product of second-order cones. The proposed algorithm uses a distance variable metric, which is induced by a class of positive definite matrices, and an appropriate choice of regularization parameter. This choice ensures the well-definedness of the proximal algorithm and forces the iterates to belong to the interior of the feasible set. Also, under suitable assumptions, it is proven that each limit point of the sequence generated by the algorithm solves the problem. Finally, computational results applied to structural optimization and support vector machines are presented.

Keywords: Proximal method, second-order cone programming, variable metric, structural optimization, multiple loads problem, support vector machines.

Category 1: Linear, Cone and Semidefinite Programming (Second-Order Cone Programming )

Citation: DIM-CMM N: CMM-B-09/06-225, Universidad de Chile, Jun/2009.

Download: [Compressed Postscript][PDF]

Entry Submitted: 06/05/2009
Entry Accepted: 06/07/2009
Entry Last Modified: 06/05/2009

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society