  


Semidefinite programming and sums of hermitian squares of noncommutative polynomials
Igor Klep (igor.klepfmf.unilj.si) Abstract: An algorithm for finding sums of hermitian squares decompositions for polynomials in noncommuting variables is presented. The algorithm is based on the "Newton chip method", a noncommutative analog of the classical Newton polytope method, and semidefinite programming. Keywords: noncommutative polynomial, sum of squares, semidefinite programming, Newton polytope Category 1: Linear, Cone and Semidefinite Programming (Semidefinite Programming ) Category 2: Optimization Software and Modeling Systems (Optimization Software Design Principles ) Citation: I. Klep and J. Povh. Semidenite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra, 214:740749, 2010. Download: [PDF] Entry Submitted: 07/22/2009 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  