Optimization Online


A Unified Approach for Minimizing Composite Norms

Necdet Serhat Aybat (nsa2106***at***columbia.edu)
Garud Iyengar (garud***at***ieor.columbia.edu)

Abstract: We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem min |sigma(F(X)-G)|_alpha + |C(X)- d|_beta subject to A(X)-b in Q; where sigma(X) denotes the vector of singular values of X, the matrix norm |sigma(X)|_alpha denotes either the Frobenius, the nuclear, or the L2-operator norm of X, the vector norm |.|_beta denotes either the L1-norm, L2-norm or the L infty-norm; Q is a closed convex set and A(.), C(.), F(.) are linear operators from matrices to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all epsilon > 0, the FALC iterates are epsilon-feasible and epsilon-optimal after O(log(1/epsilon)) iterations, which require O(1/epsilon) constrained shrinkage operations and Euclidean projection onto the set Q. Surprisingly, on the problem sets we tested, FALC required only O(log(1/epsilon)) constrained shrinkage, instead of the O(1/epsilon) worst case bound, to compute an epsilon-feasible and epsilon-optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.

Keywords: Augmented Lagrangian Method, First Order Method, Matrix Completion, Nuclear Norm, Robust PCA, Compressed Sensing, Basis Pursuit

Category 1: Convex and Nonsmooth Optimization

Category 2: Convex and Nonsmooth Optimization (Nonsmooth Optimization )


Download: [PDF]

Entry Submitted: 05/25/2010
Entry Accepted: 05/25/2010
Entry Last Modified: 08/06/2012

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society