Optimization Online


Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems

Miguel Lejeune (mlejeune***at***gwu.edu)

Abstract: optimization problems in which the random variables are represented by an extremely large number of scenarios. The method involves the binarization of the probability distribution, and the generation of a consistent partially defined Boolean function (pdBf) representing the combination (F,p) of the binarized probability distribution F and the enforced probability level p. We show that the pdBf representing (F,p) can be compactly extended as a disjunctive normal form (DNF). The DNF is a collection of combinatorial p-patterns, each of which defining sufficient conditions for a probabilistic constraint to hold. We propose two linear programming formulations for the generation of p-patterns which can be subsequently used to derive a linear programming inner approximation of the original stochastic problem. A formulation allowing for the concurrent generation of a p-pattern and the solution of the deterministic equivalent of the stochastic problem is also proposed. Results show that large-scale stochastic problems, in which up to 50,000 scenarios are used to describe the stochastic variables, can be consistently solved to optimality within a few seconds.

Keywords: Programming: stochastic; Probability; Combinatorial Pattern; Probabilistic Constraint; Boolean Programming

Category 1: Stochastic Programming

Citation: To appear in Operations Research.

Download: [PDF]

Entry Submitted: 08/20/2010
Entry Accepted: 08/20/2010
Entry Last Modified: 09/24/2012

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society