  


The central curve in linear programming
Jesus De Loera(deloeramath.ucdavis.edu) Abstract: The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These invariants, along with the degree of the Gauss image of the curve, are expressed in terms of the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields an instancespecific bound on the total curvature of the central path, a quantity relevant for interior point methods. The global geometry of central curves is studied in detail. Keywords: Linear programming, central path, interior point methods, matroid, Tutte polynomial, hyperbolic polynomial, Gauss map, degree, curvature, projective variety, Groebner basis, hyperplane arrangement. Category 1: Linear, Cone and Semidefinite Programming (Linear Programming ) Category 2: Convex and Nonsmooth Optimization (Convex Optimization ) Category 3: Nonlinear Optimization (Other ) Citation: submitted, University of California, 2010 Download: [PDF] Entry Submitted: 12/17/2010 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  