Optimization Online


Scalable Stochastic Optimization of Complex Energy Systems

Miles Lubin (mlubin***at***mcs.anl.gov)
Cosmin Petra (petra***at***mcs.anl.gov)
Mihai Anitescu (anitescu***at***mcs.anl.gov)
Victor Zavala (vzavala***at***mcs.anl.gov)

Abstract: We present a scalable approach and implementation for solving stochastic programming problems, with application to the optimization of complex energy systems under uncertainty. Stochastic programming is used to make decisions in the present while incorporating a model of uncertainty about future events (scenarios). These problems present serious computational difficulties as the number of scenarios becomes large and the complexity of the system and planning horizons increase, necessitating the use of parallel computing. Our novel hybrid parallel implementation PIPS is based on interior-point methods and uses a Schur complement technique to obtain a scenario-based decomposition of the linear algebra. PIPS is applied to a stochastic economic dispatch problem that uses hourly wind forecasts and a detailed physical power flow model. Solving this problem is necessary for efficient integration of wind power with the Illinois power grid and real-time energy market. Strong scaling efficiency of 96% is obtained on 32 racks (131,072 cores) of the "Intrepid" Blue Gene/P system at Argonne National Laboratory.

Keywords: stochastic programming, parallel computing, supercomputing, wind power, economic dispatch

Category 1: Stochastic Programming

Category 2: Optimization Software and Modeling Systems (Parallel Algorithms )

Citation: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC11), November 2011.


Entry Submitted: 04/18/2011
Entry Accepted: 04/18/2011
Entry Last Modified: 10/19/2011

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society