-

 

 

 




Optimization Online





 

Iteration Complexity of Randomized Block-Coordinate Descent Methods for Minimizing a Composite Function

Peter Richtarik (peter.richtarik***at***ed.ac.uk)
Martin Takac (m.takac***at***sms.ed.ac.uk)

Abstract: In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an $\epsilon$-accurate solution with probability at least $1-\rho$ in at most $O(\tfrac{n}{\epsilon} \log \tfrac{1}{\rho})$ iterations, where $n$ is the number of blocks. For strongly convex functions the method converges linearly. This extends recent results of Nesterov [Efficiency of coordinate descent methods on huge-scale optimization problems, CORE Discussion Paper \#2010/2], which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing $\epsilon$ from the logarithmic term. More importantly, in contrast with the aforementioned work in which the author achieves the results by applying the method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving true iteration complexity bounds. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the algorithm is able to solve huge-scale $\ell_1$-regularized least squares and support vector machine problems with a billion variables.

Keywords: Block coordinate descent, iteration complexity, composite minimization, coordinate relaxation, alternating minimization, convex optimization, L1-regularization, large scale support vector machines

Category 1: Convex and Nonsmooth Optimization (Convex Optimization )

Citation:

Download: [PDF]

Entry Submitted: 07/06/2011
Entry Accepted: 07/06/2011
Entry Last Modified: 07/14/2012

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society