-

 

 

 




Optimization Online





 

Constrained Derivative-Free Optimization on Thin Domains

J. M. Martínez (martinez***at***ime.unicamp.br)
F. N. C. Sobral (fsobral***at***ime.unicamp.br)

Abstract: Many derivative-free methods for constrained problems are not efficient for minimizing functions on "thin" domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. An algorithm that handles efficiently this case is proposed in this paper. The main iteration is splitted into two steps: restoration and minimization. In the restoration step the aim is to decrease infeasibility without evaluating the objective function. In the minimization step the objective function $f$ is minimized on a relaxed feasible set. A global minimization result will be proved and computational experiments showing the advantages of this approach will be presented.

Keywords: Derivative-Free Optimization, Disconnected Domains, Global Convergence, Numerical Experiments, Thin Domains

Category 1: Global Optimization (Applications )

Category 2: Nonlinear Optimization (Other )

Category 3: Nonlinear Optimization (Constrained Nonlinear Optimization )

Citation: Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas, Campinas, SP, Brazil (2011). Submitted.

Download: [PDF]

Entry Submitted: 08/29/2011
Entry Accepted: 08/29/2011
Entry Last Modified: 09/19/2011

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society