  


Partial Smoothness,Tilt Stability, and Generalized Hessians
Adrian Lewis(aslewisorie.cornell.edu) Abstract: We compare two recent variationalanalytic approaches to secondorder conditions and sensitivity analysis for nonsmooth optimization. We describe a broad setting where computing the generalized Hessian of Mordukhovich is easy. In this setting, the idea of tilt stability introduced by Poliquin and Rockafellar is equivalent to a classical smooth secondorder condition. Keywords: variational analysis, nonsmooth optimization, secondorder, sensitivity analysis, proxregular, subdifferential continuity, partial smoothness, generalized Hessian, tilt stability Category 1: Convex and Nonsmooth Optimization (Nonsmooth Optimization ) Citation: [1] F. J. A. Artacho and M. H. Geoffroy, Characterization of metric regularity of subdierentials, Convex Anal., 15 (2008), pp. 365–380. [2] J. Bolte, A. Daniilidis, and A. S. Lewis, Tame mappings are semismooth, Math. Program., Vol. 117 (2009). [3] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. [4] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solutions Mappings, Springer, New York, 2009. [5] W. L. Hare and A. S. Lewis, Identifying active constraints via partial smoothness and proxregularity, Convex Anal., 11 (2004), pp. 251–266. [6] R. Henrion, J. Outrata, and T. Surowiec, On the coderivative of normal cone mappings to inequality systems, Nonlinear Anal., 71 (2009), pp. 1213–1226. [7] J. M. Lee, Introduction to Smooth Manifolds, Springer, New York, 2006. [8] A. S. Lewis, Active sets, nonsmoothness and sensitivity, SIAM J. Optim., 13 (2003), pp. 702–725. [9] R. Mifflin and C. Sagastiz´abal, A VUalgorithm for convex minimization, Math. Program., 104 (2005), pp. 583–608. [10] S. A. Miller and J. Malick, Newton methods for nonsmooth convex minimization: connections among U lagrangian, Riemannian Newton and SQP methods, Math. Progam., 104 (2005), pp. 609–633. [11] B. S.Mordukhovich, Sensitivity analysis in nonsmooth optimization, SIAM J. Appl. Math., 58 (1992), pp. 32–46. [12] , Variational Analysis and Generalized Dierentiation, Springer, Berlin, 2006. [13] B. S. Mordukhovich and J. Outrata, On secondorder subdierentials and their applications, SIAM J. Optim., 1 (2001), pp. 139–169. [14] B. S. Mordukhovich and R. T. Rockafellar, Secondorder subdierential calculus with applications to optimization, (2011). Manuscript. [15] F. Oustry, The Ulagrangian of the maximum eigenvalue function, SIAM J. Optim., 9 (1999), pp. 526–549. [16] J. V. Outrata and H. Ram´rez C., On the Aubin property of critical points to perturbed secondorder cone programs, SIAM J. Optim., 21 (2011), pp. 798–823. [17] R. A. Poliquin and R. T. Rockafellar, Proxregular functions in variational analysis, Trans. Amer. Math. Soc., 348 (1996), pp. 1805–1838. [18] , Tilt stability of a local minimum, SIAM J. Optim., 8 (1998), pp. 287–299. [19] R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local dierentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), pp. 5231–5249. [20] R. T. Rockafellar and R. J.B. Wets, Variational Analysis, SpringerVerlag, Berlin, 1998. [21] S. J. Wright, Identifiable surfaces in constrained optimization, SIAM J. Control Optim., 31 (1993), pp. 1063– 1079. Download: [PDF] Entry Submitted: 10/17/2011 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  