-

 

 

 




Optimization Online





 

On the Difficulty of Deciding Asymptotic Stability of Cubic Homogeneous Vector Fields

Amir Ali Ahmadi(a_a_a***at***mit.edu)

Abstract: It is well-known that asymptotic stability (AS) of homogeneous polynomial vector fields of degree one (i.e., linear systems) can be decided in polynomial time e.g. by searching for a quadratic Lyapunov function. Since homogeneous vector fields of even degree can never be AS, the next interesting degree to consider is equal to three. In this paper, we prove that deciding AS of homogeneous cubic vector fields is strongly NP-hard and pose the question of determining whether it is even decidable. As a byproduct of the reduction that establishes our NP-hardness result, we obtain a Lyapunov-inspired technique for proving positivity of forms. We also show that for asymptotically stable homogeneous cubic vector fields in as few as two variables, the minimum degree of a polynomial Lyapunov function can be arbitrarily large. Finally, we show that there is no monotonicity in the degree of polynomial Lyapunov functions that prove AS; i.e., a homogeneous cubic vector field with no homogeneous polynomial Lyapunov function of some degree $d$ can very well have a homogeneous polynomial Lyapunov function of degree less than $d$.

Keywords: complexity of deciding stability, differential equations, polynomial and sum of squares Lyapunov functions

Category 1: Nonlinear Optimization (Systems governed by Differential Equations Optimization )

Category 2: Applications -- Science and Engineering (Control Applications )

Category 3: Linear, Cone and Semidefinite Programming (Semi-definite Programming )

Citation: Submitted for publication.

Download: [PDF]

Entry Submitted: 12/04/2011
Entry Accepted: 12/04/2011
Entry Last Modified: 12/04/2011

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society