-

 

 

 




Optimization Online





 

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

Daniel Robinson(daniel.p.robinson***at***gmail.com)
Philip Gill(pgill***at***ucsd.edu)

Abstract: Sequential quadratic programming (SQP) methods are a popular class of methods for nonlinearly constrained optimization. They are particularly effective for solving a sequence of related problems, such as those arising in mixed-integer nonlinear programming and the optimization of functions subject to differential equation constraints. Recently, there has been considerable interest in the formulation of \emph{stabilized} SQP methods, which are specifically designed to handle degenerate optimization problems. Existing stabilized SQP methods are essentially local, in the sense that both the formulation and analysis focus on a neighborhood of a solution. We present the formulation and analysis of a new SQP method that has favorable global convergence properties yet is equivalent to a variant of the conventional stabilized SQP method in the neighborhood of a solution. The method is based on the combination of a primal-dual generalized augmented Lagrangian merit function with a \emph{flexible} line search to obtain a sequence of improving estimates of the solution. An important feature of the method is that the quadratic programming (QP) subproblem is defined using the exact Hessian of the Lagrangian, yet has a unique bounded solution. This gives the potential for fast convergence in the neighborhood of a solution. Additional benefits of the method include: (i) each QP subproblem is regularized; (ii) the \QP{} subproblem always has a known feasible point; and (iii) a projected gradient method may be used to identify the QP active set when far from the solution.

Keywords: Nonlinear programming, nonlinear constraints, augmented Lagrangian, sequential quadratic programming, SQP methods, stabilized SQP, regularized methods, primal-dual methods.

Category 1: Nonlinear Optimization (Constrained Nonlinear Optimization )

Citation: University of California, San Diego Mathematics Department Report 10-2012

Download: [PDF]

Entry Submitted: 06/29/2012
Entry Accepted: 06/29/2012
Entry Last Modified: 06/29/2012

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society