Optimization Online


Tensor Principal Component Analysis via Convex Optimization

Bo Jiang(jiang373***at***umn.edu)
Shiqian Ma(sm2756***at***gmail.com)
Shuzhong Zhang(zhangs***at***umn.edu)

Abstract: This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is super-symmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor is rank-one, then the embedded matrix must be rank-one too, and vice versa. The tensor PCA problem can thus be solved by means of matrix optimization under a rank-one constraint, for which we propose two solution methods: (1) imposing a nuclear norm penalty in the objective to enforce a low-rank solution; (2) relaxing the rank-one constraint by Semidefinite Programming. Interestingly, our experiments show that both methods yield a rank-one solution with high probability, thereby solving the original tensor PCA problem to optimality with high probability. To further cope with the size of the resulting convex optimization models, we propose to use the alternating direction method of multipliers, which reduces significantly the computational efforts. Various extensions of the model are considered as well.

Keywords: Tensor; Principal Component Analysis; Low Rank; Nuclear Norm; Semidefinite Programming Relaxation

Category 1: Convex and Nonsmooth Optimization (Convex Optimization )


Download: [PDF]

Entry Submitted: 12/11/2012
Entry Accepted: 12/12/2012
Entry Last Modified: 12/11/2012

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society