- | ||||
|
![]()
|
Orthogonal invariance and identifiability
Aris Daniilidis(arisd Abstract: Orthogonally invariant functions of symmetric matrices often inherit properties from their diagonal restrictions: von Neumann's theorem on matrix norms is an early example. We discuss the example of ``identifiability'', a common property of nonsmooth functions associated with the existence of a smooth manifold of approximate critical points. Identifiability (or its synonym, ``partial smoothness'') is the key idea underlying active set methods in optimization. Polyhedral functions, in particular, are always partly smooth, and hence so are many standard examples from eigenvalue optimization. Keywords: Eigenvalues, symmetric matrix, partial smoothness, identifiable set, polyhedra, duality Category 1: Convex and Nonsmooth Optimization (Nonsmooth Optimization ) Citation: preprint, Cornell and U.A.B. Download: [PDF] Entry Submitted: 04/11/2013 Modify/Update this entry | ||
Visitors | Authors | More about us | Links | |
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository
|
Submit Update Policies |
Coordinator's Board Classification Scheme Credits Give us feedback |
Optimization Journals, Sites, Societies | |
![]() |