Optimization Online


On a generalization of Pólya's and Putinar-Vasilescu's Positivstellensätze

Peter J.C. Dickinson (peter.dickinson***at***cantab.net)
Janez Povh (janez.povh***at***fis.unm.si)

Abstract: In this paper we provide a generalization of two well-known positivstellensätze, namely the positivstellensatz from Pólya [Georg Pólya. Über positive darstellung von polynomen vierteljschr. In Naturforsch. Ges. Zürich, 73: 141-145, 1928] and the positivestellensatz from Putinar and Vasilescu [Mihai Putinar and Florian-Horia Vasilescu. Positive polynomials on semialgebraic sets. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 328(7), 1999]. We show that if a homogeneous polynomial is strictly positive over the intersection of the non-negative orthant and a given basic semialgebraic cone, then there exists a "Pólya type" certificate for non-negativity.

Keywords: positivestellensatz; semialgebraic set; non-negativity certificate; polynomial optimization

Category 1: Linear, Cone and Semidefinite Programming

Category 2: Convex and Nonsmooth Optimization

Category 3: Global Optimization

Citation: Submitted

Download: [PDF]

Entry Submitted: 05/16/2013
Entry Accepted: 05/16/2013
Entry Last Modified: 06/27/2014

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society