Optimization Online


Improving the LP bound of a MILP by dual concurrent branching and the relationship to cut generation methods

H. Georg Büsching (lpbuesching***at***googlemail.com)

Abstract: In this paper branching for attacking MILP is investigated. Under certain circumstances branches can be done concurrently. By introducing a new calculus it is shown there are restrictions for dual values. As a second result of this study a new class of cuts for MILP is found, which are defined by those values. This class is a superclass of all other classes of cuts. Furthermore the restrictions of the dual values can be used for studying the addition of arbitrary inequalities. This theory has similarities but also big differences to the theory of disjunctive programming.

Keywords: disjunctive cuts, dual branchings in MILP

Category 1: Integer Programming (Cutting Plane Approaches )

Category 2: Integer Programming ((Mixed) Integer Linear Programming )

Category 3: Combinatorial Optimization (Branch and Cut Algorithms )

Citation: Report is to be published. Comments and supporters are strongly welcomed for this!

Download: [PDF]

Entry Submitted: 07/27/2013
Entry Accepted: 07/28/2013
Entry Last Modified: 07/29/2013

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society