Optimization Online


An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex

Etienne de Klerk (E.deKlerk***at***uvt.nl)
Monique Laurent (M.Laurent***at***cwi.nl)
Zhao Sun (z.sun***at***uvt.nl)

Abstract: The problem of minimizing a polynomial over the standard simplex is one of the basic NP-hard nonlinear optimization problems --- it contains the maximum clique problem in graphs as a special case. It is known that the problem allows a polynomial-time approximation scheme (PTAS) for polynomials of fixed degree, which is based on polynomial evaluations at the points of a sequence of regular grids. In this paper, we provide an alternative proof of the PTAS property. The proof relies on the properties of Bernstein approximation on the simplex. We also refine a known error bound for the scheme for polynomials of degree three. The main contribution of the paper is to provide new insight into the PTAS by establishing precise links with Bernstein approximation and the multinomial distribution.

Keywords: Polynomial optimization over a simplex, PTAS, Bernstein approximation

Category 1: Nonlinear Optimization

Citation: Technical report, Tilburg University and CWI, Amsterdam, the Netherlands, November 2013.

Download: [PDF]

Entry Submitted: 11/01/2013
Entry Accepted: 11/01/2013
Entry Last Modified: 10/28/2014

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society