  


Approximation Algorithms for the Incremental Knapsack Problem via Disjunctive Programming
Daniel Bienstock(danocolumbia.edu) Abstract: In the \emph{incremental knapsack problem} ($\IK$), we are given a knapsack whose capacity grows weakly as a function of time. There is a time horizon of $T$ periods and the capacity of the knapsack is $B_t$ in period $t$ for $t = 1, \ldots, T$. We are also given a set $S$ of $N$ items to be placed in the knapsack. Item $i$ has a value of $v_i$ and a weight of $w_i$ that is independent of the time period. At any time period $t$, the sum of the weights of the items in the knapsack cannot exceed the knapsack capacity $B_t$. Moreover, once an item is placed in the knapsack, it cannot be removed from the knapsack at a later time period. We seek to maximize the sum of (discounted) knapsack values over time subject to the capacity constraints. We first give a constant factor approximation algorithm for $\IK$, under mild restrictions on the growth rate of $B_t$ (the constant factor depends on the growth rate). We then give a PTAS for $\IIK$, the special case of $\IK$ with no discounting, when $T = O(\sqrt{\log N})$. Keywords: Approximation Algorithms, Integer Programming, Disjunctive Programming Category 1: Combinatorial Optimization (Approximation Algorithms ) Category 2: Integer Programming (01 Programming ) Citation: Columbia University, Nov 2013. Download: [PDF] Entry Submitted: 11/18/2013 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  