  


Efficient FirstOrder Methods for Linear Programming and Semidefinite Programming
James Renegar (renegarcornell.edu) Abstract: We present a simple transformation of any linear program or semidefinite program into an equivalent convex optimization problem whose only constraints are linear equations. The objective function is defined on the whole space, making virtually all subgradient methods be immediately applicable. We observe, moreover, that the objective function is naturally ``smoothed,'' thereby allowing most firstorder methods to be applied. We develop complexity bounds in the unsmoothed case for a particular subgradient method, and in the smoothed case for Nesterov's original ``optimal'' firstorder method for smooth functions. We achieve the desired bounds on the number of iterations, $ O(1/ \epsilon^2) $ and $ O(1/ \epsilon) $, respectively. However, contrary to most of the literature on firstorder methods, we measure error relatively, not absolutely. On the other hand, also unlike most of the literature, we require only the level sets to be bounded, not the entire feasible region to be bounded. Perhaps most surprising is that the transformation from a linear program or a semidefinite program is simple and so is the basic theory, and yet the approach has been overlooked until now, a blind spot. Once the transformation is realized, the remaining effort in establishing complexity bounds is mainly straightforward, by making use of various works of Nesterov. Keywords: linear programming, semidefinite programming, firstorder methods, complexity Category 1: Linear, Cone and Semidefinite Programming (Linear Programming ) Category 2: Linear, Cone and Semidefinite Programming (Semidefinite Programming ) Citation: arXiv:1409.5832 Download: [PDF] Entry Submitted: 09/27/2014 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  