Optimization Online


Interior-point solver for convex separable block-angular problems

Jordi Castro (jordi.castro***at***upc.edu)

Abstract: Constraints matrices with block-angular structures are pervasive in Optimization. Interior-point methods have shown to be competitive for these structured problems by exploiting the linear algebra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The preconditioner is based on a power series expansion which approximates the inverse of the matrix of the linking constraints system. In this work we present an efficient solver based on this algorithm. Some of its features are: it solves linearly constrained convex separable problems (linear, quadratic or nonlinear); both Newton and second-order predictor-corrector directions can be used, either with the Cholesky+PCG scheme or with a Cholesky factorization of normal equations; the preconditioner may include any number of terms of the power series; for any number of these terms, it estimates the spectral radius of the matrix in the power series (which is instrumental for the quality of the preconditioner). The solver has been hooked to SML, a structure-conveying modelling language based on the popular AMPL modeling language. Computational results are reported for some large and/or difficult instances in the literature: (1) multicommodity flow problems; (2) minimum congestion problems; (3) statistical data protection problems using $\ell_1$ and $\ell_2$ distances (which are linear and quadratic problems, respectively), and the pseudo-Huber function, a nonlinear approximation to $\ell_1$ which improves the preconditioner. In the largest instances, of up to 25 millions of variables and 300000 constraints, this approach is from two to three orders of magnitude faster than state-of-the-art linear and quadratic optimization solvers.

Keywords: interior-point methods; structured problems; normal equations; preconditioned conjugate gradient; large-scale optimization; optimization software

Category 1: Optimization Software and Modeling Systems

Category 2: Convex and Nonsmooth Optimization (Convex Optimization )

Citation: J. Castro, Interior-point solver for convex separable block-angular problems, Research Report DR 2014/03, Dept. of Statistics and Operations Research, Universitat Polit├Ęcnica de Catalunya, Barcelona, 2014.

Download: [PDF]

Entry Submitted: 10/08/2014
Entry Accepted: 10/08/2014
Entry Last Modified: 11/04/2014

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society