Optimization Online


Iteration Bounds for Finding the $\epsilon$-Stationary Points for Structured Nonconvex Optimization

Bo Jiang(isyebojiang***at***163.com)
Shuzhong Zhang(zhangs***at***umn.edu)

Abstract: In this paper we study proximal conditional-gradient (CG) and proximal gradient-projection type algorithms for a block-structured constrained nonconvex optimization model, which arises naturally from tensor data analysis. First, we introduce a new notion of $\epsilon$-stationarity, which is suitable for the structured problem under consideration. %, compared with other similar solution concepts. We then propose two types of first-order algorithms for the model based on the proximal conditional-gradient (CG) method and the proximal gradient-projection method respectively. If the nonconvex objective function is in the form of mathematical expectation, we then discuss how to incorporate randomized sampling to avoid computing the expectations exactly. For the general block optimization model, the proximal subroutines are performed for each block according to either the block-coordinate-descent (BCD) or the maximum-block-improvement (MBI) updating rule. If the gradient of the nonconvex part of the objective $f$ satisfies $\| \nabla f(x) - \nabla f(y)\|_q \le M \|x-y\|_p^\delta$ where $\delta=p/q$ with $1/p+1/q=1$, then we prove that the new algorithms have an overall iteration complexity bound of $O(1/\epsilon^q)$ in finding an $\epsilon$-stationary solution. If $f$ is concave then the iteration complexity reduces to $O(1/\epsilon)$. Our numerical experiments for tensor approximation problems show promising performances of the new solution algorithms.

Keywords: constrained nonconvex optimization, block variables, iteration complexity bounds, conditional gradient algorithm

Category 1: Nonlinear Optimization (Constrained Nonlinear Optimization )

Category 2: Convex and Nonsmooth Optimization (Nonsmooth Optimization )


Download: [PDF]

Entry Submitted: 10/15/2014
Entry Accepted: 10/15/2014
Entry Last Modified: 10/15/2014

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society