Optimization Online


Parallel Block Coordinate Minimization with Application to Group Regularized Regression

Giuseppe Calafiore(giuseppe.calafiore***at***polito.it)

Abstract: This paper proposes a method for parallel block coordinate-wise minimization for convex functions. Each iteration involves a first phase where n independent minimizations are performed over the n variable blocks, followed by a phase where the results of the first phase are coordinated to obtain the whole variable update. Convergence of the method to the global optimum is proved for functions composed of a smooth part plus a possibly non-smooth but separable term. The method is also proved to have linear rate of convergence, for functions that are smooth and strongly convex. The proposed algorithm can give computational advantage over the more standard serial block coordinate-wise minimization methods, when run over a parallel, multi-worker, computing architecture. The method is suitable for regularized regression problems, such as the group Lasso, group Ridge regression, and goup Elastic Net. Numerical tests are run on such type of regression problems to exemplify the performance of the proposed parallel method in comparison with the serial one.

Keywords: Block coordinate minimization, Nondifferentiable minimization, Parallel methods, Group Lasso, Ridge regression, Elastic Net, Regularized regression.

Category 1: Convex and Nonsmooth Optimization

Citation: DAUIN, Politecnico di Torino internal report, March 2015

Download: [PDF]

Entry Submitted: 03/13/2015
Entry Accepted: 03/13/2015
Entry Last Modified: 03/13/2015

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society