-

 

 

 




Optimization Online





 

Distributed Gradient Methods with Variable Number of Working Nodes

Dusan Jakovetic(djakovet***at***uns.ac.rs)
Dragana Bajovic(dbajovic***at***uns.ac.rs)
Natasa Krejic(natasak***at***uns.ac.rs)
Natasa Krklec-Jerinkic(natasa.krklec***at***dmi.uns.ac.rs)

Abstract: We consider distributed optimization where $N$ nodes in a connected network minimize the sum of their local costs subject to a common constraint set. We propose a distributed projected gradient method where each node, at each iteration $k$, performs an update (is active) with probability $p_k$, and stays idle (is inactive) with probability $1-p_k$. Whenever active, each node performs an update by weight-averaging its solution estimate with the estimates of its active neighbors, taking a negative gradient step with respect to its local cost, and performing a projection onto the constraint set; inactive nodes perform no updates. Assuming that nodes' local costs are strongly convex, with Lipschitz continuous gradients, we show that, as long as activation probability $p_k$ grows to one asymptotically, our algorithm converges in the mean square sense (MSS) to the same solution as the standard distributed gradient method, i.e., as if all the nodes were active at all iterations. Moreover, when $p_k$ grows to one linearly, with an appropriately set convergence factor, the algorithm has a linear MSS convergence, with practically the same factor as the standard distributed gradient method. Simulations demonstrate that, when compared with the standard distributed gradient method, the proposed algorithm significantly reduces the overall number of per-node communications and per-node gradient evaluations (computational cost) for the same required accuracy.

Keywords: Distributed optimization, distributed gradient method, variable number of working nodes, convergence rate, consensus.

Category 1: Network Optimization

Category 2: Convex and Nonsmooth Optimization (Convex Optimization )

Citation:

Download: [PDF]

Entry Submitted: 04/15/2015
Entry Accepted: 04/21/2015
Entry Last Modified: 04/15/2015

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society