-

 

 

 




Optimization Online





 

AN ASYMPTOTIC VISCOSITY SELECTION RESULT FOR THE REGULARIZED NEWTON DYNAMIC

Boushra Abbas(abbas.boushra***at***hotmail.fr)

Abstract: Let $\Phi:\mathcal{H}\longrightarrow\mathbb{R\cup}\left\{ +\infty\right\} $ be a closed convex proper function on a real Hilbert space $\mathcal{H}$, and $\partial\Phi:\mathcal{H}\rightrightarrows\mathcal{H}$ its subdifferential. For any control function $\epsilon:\mathbb{R}_{+}\longrightarrow\mathbb{R}_{+}$ which tends to zero as $t$ goes to $+\infty$, and $\lambda$ a positive parameter, we study the asymptotic behavior of the trajectories of the regularized Newton dynamical system \begin{eqnarray*} & & \upsilon\left(t\right)\in\partial\Phi\left(x\left(t\right)\right)\\ & & \lambda\dot{x}\left(t\right)+\dot{\upsilon}\left(t\right)+\upsilon\left(t\right)+\varepsilon\left(t\right)x\left(t\right)=0. \end{eqnarray*} Assuming that $\varepsilon\left(t\right)$ tends to zero moderately as $t$ goes to $+\infty$, we show that the term $\varepsilon\left(\cdot\right)x\left(\cdot\right)$ asymptotically acts as a Tikhonov regularization, which forces the trajectories to converge to a particular equilibrium. Precisely, when $C=\textrm{argmin}\Phi\neq\emptyset$, and $\varepsilon (\cdot)$ is a ``slow'' control, i.e., $\int_{0}^{+\infty}\varepsilon\left(t\right)dt=+\infty$, then each trajectory of the system converges weakly, as $t$ goes to $+\infty$, to the element of minimal norm of the closed convex set $C.$ When $\Phi$ is a convex differentiable function whose gradient is Lipschitz continuous, we show that the strong convergence property is satisfied. Then we examine the effect of other types of regularizing methods.

Keywords:

Category 1: Nonlinear Optimization

Citation:

Download: [PDF]

Entry Submitted: 04/29/2015
Entry Accepted: 04/29/2015
Entry Last Modified: 04/29/2015

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society