Optimization Online


Benders Decomposition and Column-and-Row Generation for Solving Large-Scale Linear Programs with Column-Dependent-Rows

Ibrahim Muter (i.muter***at***bath.ac.uk)
S. Ilker Birbil (sibirbil***at***sabanciuniv.edu)
Kerem Bulbul (bulbul***at***sabanciuniv.edu)

Abstract: In a recent work, Muter et al. (2013a) identified and characterized a general class of linear programming (LP) problems - known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear together. In a typical CDR-problem, the number of linking constraints grows very quickly with the number of variables, which motivates generating both columns and their associated linking constraints simultaneously on-the-fly. In this paper, we expose the decomposable structure of CDR-problems via Benders decomposition. However, this approach brings on its own theoretical challenges. One group of variables is generated in the Benders master problem, while the generation of the linking constraints is relegated to the Benders subproblem along with the second group of variables. A fallout of this separation is that only a partial description of the dual of the Benders subproblem is available over the course of the algorithm. We demonstrate how the pricing subproblem for the column generation applied to the Benders master problem does also update the dual polyhedron and the existing Benders cuts in the master problem to ensure convergence. Ultimately, a novel integration of Benders cut generation and the simultaneous generation of columns and constraints yields a brand-new algorithm for solving large-scale CDR-problems. We illustrate the application of the proposed method on a time-constrained routing problem. Our numerical experiments confirm the outstanding performance of the new decomposition method.

Keywords: linear programming; column-dependent-rows; column generation; column-and-row generation; Benders decomposition; pricing subproblem; quadratic set covering; time-constrained routing problem.

Category 1: Linear, Cone and Semidefinite Programming (Linear Programming )

Citation: Muter, I., Birbil, S. I., and Bulbul, K. (2018). Benders Decomposition and Column-and-Row Generation for Solving Large-Scale Linear Programs with Column-Dependent-Rows. European Journal of Operational Research, 264(1):29-45. http://dx.doi.org/10.1016/j.ejor.2017.06.044.

Download: [PDF]

Entry Submitted: 10/31/2015
Entry Accepted: 11/02/2015
Entry Last Modified: 08/27/2017

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society