  


An O(nm) time algorithm for finding the min length directed cycle in a graph
James Orlin(jorlinmit.edu) Abstract: In this paper, we introduce an $O(nm)$ time algorithm to determine the minimum length directed cycle in a directed network with $n$ nodes and $m$ arcs and with no negative length directed cycles. This result improves upon the previous best time bound of $O(nm + n^2 \log\log n)$. Our algorithm first determines the cycle with minimum mean length $\lambda^*$ in $O(nm)$ time. Subsequently, it chooses node potentials so that all reduced costs are $\lambda^*$ or greater. It then solves the all pairs shortest path problem, but restricts attention to paths of length at most $n\lambda^*$. We speed up the shortest path calculations to $O(m)$ per source node, leading to an $O(nm)$ running time in total. We also carry out computational experiments comparing the performance of the proposed methods and other stateoftheart methods. Experiments confirmed that it is advantageous to solve the minimum mean cycle problem prior to solving shortest path problems. Analysis of our experiments suggest that the running time to solve the minimum length directed cycle problem was much faster than $O(n^2)$ on average. Keywords: Shortest cycle, minimum cost cycle, minimum length directed cycle, Category 1: Network Optimization Category 2: Combinatorial Optimization (Graphs and Matroids ) Category 3: Optimization Software and Modeling Systems Citation: MIT Report. February 11, 2016. Download: [PDF] Entry Submitted: 02/11/2016 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  