Optimization Online


Penalty Alternating Direction Methods for Mixed-Integer Optimization: A New View on Feasibility Pumps

Bj÷rn Gei▀ler (bjoern.geissler***at***math.uni-erlangen.de)
Antonio Morsi (antonio.morsi***at***math.uni-erlangen.de)
Lars Schewe (lars.schewe***at***math.uni-erlangen.de)
Martin Schmidt (mar.schmidt***at***fau.de)

Abstract: Feasibility pumps are highly effective primal heuristics for mixed-integer linear and nonlinear optimization. However, despite their success in practice there are only few works considering their theoretical properties. We show that feasibility pumps can be seen as alternating direction methods applied to special reformulations of the original problem, inheriting the convergence theory of these methods. Moreover, we propose a novel penalty framework that encompasses this alternating direction method, which allows us to refrain from random perturbations that are applied in standard versions of feasibility pumps in case of failure. We present a convergence theory for the new penalty based alternating direction method and compare the new variant of the feasibility pump with existing versions in an extensive numerical study for mixed-integer linear and nonlinear problems.

Keywords: Mixed-Integer Nonlinear Optimization, Mixed-Integer Linear Optimization, Feasibility Pump, Alternating Direction Methods, Penalty Methods

Category 1: Integer Programming ((Mixed) Integer Nonlinear Programming )

Category 2: Integer Programming ((Mixed) Integer Linear Programming )


Download: [PDF]

Entry Submitted: 04/07/2016
Entry Accepted: 04/07/2016
Entry Last Modified: 03/22/2017

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society