  


LowRank Matrix Completion using Nuclear Norm with Facial Reduction
Shimeng Huang(s87huanguwaterloo.ca) Abstract: Minimization of the nuclear norm is often used as a surrogate, convex relaxation, for finding the minimum rank completion (recovery) of a partial matrix. The minimum nuclear norm problem can be solved as a trace minimization semidefinite programming problem (\SDP). The \SDP and its dual are regular in the sense that they both satisfy strict feasibility. Interior point algorithms are the current methods of choice for these problems. This means that it is difficult to solve large scale problems and difficult to get high accuracy solutions. In this paper we take advantage of the structure at optimality for the minimum nuclear norm problem. We show that even though strict feasibility holds, the facial reduction framework can be successfully applied to obtain a proper face that contains the optimal set, and thus can dramatically reduce the size of the final nuclear norm problem while guaranteeing a lowrank solution. We include numerical tests for both exact and noisy cases. In all cases we assume that knowledge of a \emph{target rank} is available. Keywords: Lowrank matrix completion, matrix recovery, semidefinite programming (\SDPp), facial reduction, cliques, Slater condition, nuclear norm, compressed sensing. Category 1: Linear, Cone and Semidefinite Programming Category 2: Nonlinear Optimization (Nonlinear Systems and LeastSquares ) Citation: University of Waterloo, Canada, July/2016 Download: [PDF] Entry Submitted: 08/14/2016 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  