Optimization Online


Experiments with Conflict Analysis in Mixed Integer Programming

Jakob Witzig(witzig***at***zib.de)
Timo Berthold(timoberthold***at***fico.com)
Stefan Heinz(stefanheinz***at***fico.com)

Abstract: The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as MIBLIB2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.

Keywords: Mixed Integer Programming; Conflict Analysis; LP

Category 1: Integer Programming ((Mixed) Integer Linear Programming )

Category 2: Linear, Cone and Semidefinite Programming (Linear Programming )

Citation: ZIB-Report 16-63, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, November 2016

Download: [PDF]

Entry Submitted: 11/23/2016
Entry Accepted: 11/23/2016
Entry Last Modified: 11/23/2016

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society