Optimization Online


Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones

M.S. Gowda(gowda***at***umbc.edu)
D. Sossa(david.sossa***at***gmail.com)

Abstract: Given a closed convex cone C in a finite dimensional real Hilbert space H, a weakly homogeneous map f:C-->H is a sum of two continuous maps h and g, where h is positively homogeneous of (positive) degree gamma on C and g(x)/||x||^gamma-->0 as ||x||-->infinity in C. Given such a map f, a nonempty closed convex subset K of C, and a q in H, we consider the variational inequality problem VI(f,K,q). In this paper, using degree theory, we establish some results connecting the variational inequality problem VI(f,K,q) and the cone complementarity problem CP(h,Kinfty,0), where Kinfty is the recession cone of K. As a consequence, we generalize a complementarity result of Karamardian formulated for homogeneous maps on proper cones to variational inequalities. The results above extend some similar results proved for affine variational inequalities and for polynomial complementarity problems over the nonnegative orthant in R^n. As an application, we discuss the solvability of nonlinear equations corresponding to weakly homogeneous maps over closed convex cones. In particular, we extend a result of Hillar and Johnson on the solvability of symmetric word equations to Euclidean Jordan algebras.

Keywords: Variational inequality problem, weakly homogeneous map, complementarity problem, degree, word equation

Category 1: Complementarity and Variational Inequalities

Citation: Research Report, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA. December 2016.

Download: [PDF]

Entry Submitted: 04/09/2017
Entry Accepted: 04/09/2017
Entry Last Modified: 04/09/2017

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society