- | ||||
|
![]()
|
A Derivative-Free and Ready-to-Use NLP Solver for Matlab or Octave
Florian Jarre (jarre Abstract: This paper introduces a derivative-free and ready-to-use solver for nonlinear programs with nonlinear equality and inequality constraints (NLPs). Using finite differences and a sequential quadratic programming (SQP) approach, the algorithm aims at finding a local minimizer and no extra attempt is made to generate a globally optimal solution. Due to the use of finite differences, approximations of the derivatives are expensive compared to the numerical computations that usually dominate the computational effort of NLP solvers. This fact motivates the use of a somewhat effortful trust-region SQP-subproblem that is solved by second orde cone programs. The implementation in Matlab or Octave is easy to use and public domain; numerical experiments indicate that the algorithm is well suitable for problems with $m$ inequality constraints depending on $n$ variables when $n+m\le 500$. Keywords: Minimization without derivatives, nonlinear programs sequential quadratic programming solver, Matlab. Category 1: Nonlinear Optimization Category 2: Nonlinear Optimization (Constrained Nonlinear Optimization ) Category 3: Optimization Software and Modeling Systems Citation: Jarre, F., & Lieder, F. (2017). A Derivative-Free and Ready-to-Use NLP Solver for Matlab or Octave, preprint. Download: [PDF] Entry Submitted: 05/05/2017 Modify/Update this entry | ||
Visitors | Authors | More about us | Links | |
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository
|
Submit Update Policies |
Coordinator's Board Classification Scheme Credits Give us feedback |
Optimization Journals, Sites, Societies | |
![]() |