-

 

 

 




Optimization Online





 

Stability and accuracy of Inexact Interior Point methods for convex quadratic programming

Benedetta Morini(benedetta.morini***at***unifi.it)
Valeria Simoncini(valeria.simoncini***at***unibo.it)

Abstract: We consider primal-dual IP methods where the linear system arising at each iteration is formulated in the reduced (augmented) form and solved approximately. Focusing on the iterates close to a solution, we analyze the accuracy of the so-called inexact step, i.e., the step that solves the unreduced system, when combining the effects of both different levels of accuracy in the inexact computation, and different processes for retrieving the step after block elimination. Our analysis is general and includes as special cases sources of inexactness due either to roundoff and computational errors or to the iterative solution of the augmented system using typical procedures. In the roundoff case, we recover and extend some known results.

Keywords: primal-dual interior point methods, inexact interior point steps, convex quadratic programming.

Category 1: Nonlinear Optimization

Citation:

Download: [PDF]

Entry Submitted: 05/09/2017
Entry Accepted: 05/09/2017
Entry Last Modified: 05/09/2017

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society