Optimization Online


Exact worst-case convergence rates of the proximal gradient method for composite convex minimization

Adrien B Taylor(adrien.taylor***at***inria.fr)
Julien M Hendrickx(julien.hendrix***at***uclouvain.be)
Francois Glineur(francois.glineur***at***uclouvain.be)

Abstract: We study the worst-case convergence rates of the proximal gradient method for minimizing the sum of a smooth strongly convex function and a non-smooth convex function whose proximal operator is available. We establish the exact worst-case convergence rates of the proximal gradient method in this setting for any step size and for different standard performance measures: objective function accuracy, distance to optimality and residual gradient norm. The proof methodology relies on recent developments in performance estimation of first-order methods based on semidefinite programming. In the case of the proximal gradient method, this methodology allows obtaining exact and non-asymptotic worst-case guarantees that are conceptually very simple, although apparently new. On the way, we discuss how strong convexity can be replaced by weaker assumptions, while preserving the corresponding convergence rates. We also establish that the same fixed step size policy is optimal for all three performance measures. Finally, we extend recent results on the worst-case behavior of gradient descent with exact line search to the proximal case.

Keywords: proximal gradient method; composite convex optimization; convergence rates; worst-case analysis

Category 1: Convex and Nonsmooth Optimization (Convex Optimization )

Category 2: Convex and Nonsmooth Optimization (Nonsmooth Optimization )


Download: [PDF]

Entry Submitted: 10/19/2017
Entry Accepted: 10/19/2017
Entry Last Modified: 10/19/2017

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society