Optimization Online


A feasible rounding approach for mixed-integer optimization problems

Christoph Neumann (christoph.neumann***at***kit.edu)
Oliver Stein (stein***at***kit.edu)
Nathan Sudermann-Merx (nathan.sudermann-merx***at***basf.com)

Abstract: We introduce granularity as a sufficient condition for the consistency of a mixed-integer optimization problem, and show how to exploit it for the computation of feasible points: For optimization problems which are granular, solving certain linear problems and rounding their optimal points always leads to feasible points of the original mixed-integer problem. Thus, the resulting feasible rounding approach is deterministic and even efficient, i.e., it computes feasible points in polynomial time. The optimization problems appearing in the feasible rounding approaches have a structure that is similar to that of the continuous relaxation, and thus our approach has significant advantages over heuristics, as long as the problem is granular. For instance, the computational cost of our approach always corresponds to merely a single step of the feasibility pump. A computational study on optimization problems from the MIPLIB libraries demonstrates that granularity may be expected in various real world applications. Moreover, a comparison with Gurobi indicates that state of the art software does not always exploit granularity. Hence, our algorithms do not only possess a worst-case complexity advantage, but can also improve the CPU time needed to solve problems from practice.

Keywords: Rounding; granularity; inner parallel set; consistency

Category 1: Integer Programming ((Mixed) Integer Linear Programming )

Citation: Optimization Online, Preprint ID 2017-12-6367, 2017

Download: [PDF]

Entry Submitted: 12/08/2017
Entry Accepted: 12/08/2017
Entry Last Modified: 12/08/2017

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society