Optimization Online


A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems

Jan Kronqvist(jakronqv***at***abo.fi)
David Bernal(bernalde***at***cmu.edu)
Andreas Lundell(andreas.lundell***at***abo.fi)
Tapio Westerlund(tapio.westerlund***at***abo.fi)

Abstract: Here we present a center-cut algorithm for convex mixed-integer nonlinear programming (MINLP) that can either be used as a primal heuristic or as a deterministic solution technique. Like many other algorithms for convex MINLP, the center-cut algorithm constructs a linear approximation of the original problem. The main idea of the algorithm is to use the linear approximation differently in order to find feasible solutions within only a few iterations. The algorithm chooses trial solutions as the center of the current linear outer approximation of the nonlinear constraints, making the trial solutions more likely to satisfy the constraints. The ability to find feasible solutions within only a few iterations makes the algorithm well suited as a primal heuristic, and we prove that the algorithm finds the optimal solution within a finite number of iterations. Numerical results show that the algorithm obtains feasible solutions quickly and is able to obtain good solutions.

Keywords: Convex MINLP, cutting plane techniques, center-cut algorithm, primal heuristics, outer approximation

Category 1: Integer Programming ((Mixed) Integer Nonlinear Programming )

Citation: Preprint of submitted manuscript.

Download: [PDF]

Entry Submitted: 02/06/2018
Entry Accepted: 02/06/2018
Entry Last Modified: 02/06/2018

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society