Optimization Online


Multi-Stage Stochastic Programming Models for Provisioning Cloud Computing Resources

Hazal Erol(herol***at***sabanciuniv.edu)
Kerem Bulbul(bulbul***at***sabanciuniv.edu)
Nilay Noyan(nnoyan***at***sabanciuniv.edu)

Abstract: We focus on the resource provisioning problem of a cloud consumer from an Infrastructure-as-a-Service type of cloud. The cloud provider offers two deployment options, which can be mixed and matched as appropriate. Cloud instances may be reserved for a fixed time period in advance at a smaller usage cost per hour but require a full commitment and payment for the entire contract duration. In contrast, on-demand instances reflect a pay-as-you-go policy at a premium. The trade-off between these two options is rooted in the inherent uncertainty in demand and price and makes it attractive to complement a base reserved capacity with on-demand capacity to hedge against the spikes in demand. This paper provides several novel multi-stage stochastic programming formulations to enable a cloud consumer to handle the cloud resource provisioning problem at a tactical level. We first formulate the cloud resource provisioning problem as a risk-neutral multi-stage stochastic program, which serves as the base model for further modeling variants. In our second set of models, we also incorporate a certain concept of system reliability. In particular, chance constraints integrated into the base formulation require a minimum service level met from reserved capacity, provide more visibility into the future available capacity, and smooth out expensive on-demand usage by hedging against possible demand fluctuations. Two alternate modeling paradigms---node-based versus scenario-based---are applied to all formulation types, and the corresponding computational efficiency is explored in experiments. Furthermore, some practical managerial insights are gleaned from the analysis of the solutions of the proposed models.

Keywords: cloud computing; resource provisioning; stochastic programming; multi-stage; chance constraints

Category 1: Applications -- OR and Management Sciences

Category 2: Stochastic Programming


Download: [PDF]

Entry Submitted: 10/09/2018
Entry Accepted: 10/09/2018
Entry Last Modified: 10/09/2018

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society