-

 

 

 




Optimization Online





 

Bookings in the European Gas Market: Characterisation of Feasibility and Computational Complexity Results

Martine Labbé (martine.labbe***at***ulb.ac.be)
Fränk Plein (frank.plein***at***ulb.ac.be)
Martin Schmidt (martin.schmidt***at***uni-trier.de)

Abstract: As a consequence of the liberalisation of the European gas market in the last decades, gas trading and transport have been decoupled. At the core of this decoupling are so-called bookings and nominations. Bookings are special capacity right contracts that guarantee that a specified amount of gas can be supplied or withdrawn at certain entry or exit nodes of the network. These supplies and withdrawals are nominated at the day-ahead. The special property of bookings then is that they need to be feasible, i.e., every nomination that complies with the given bookings can be transported. While checking the feasibility of a nomination can typically be done by solving a mixed-integer nonlinear feasibility problem, the verification of feasibility of a set of bookings is much harder. The reason is the robust nature of feasibility of bookings - namely that for a set of bookings to be feasible, all compliant nominations, i.e., infinitely many, need to be checked for feasibility. In this paper, we consider the question of how to verify the feasibility of given bookings for a number of special cases. For our physics model we impose a steady-state potential-based flow model and disregard controllable network elements. For this case we derive a characterisation of feasible bookings, which is then used to show that the problem is in coNP for the general case but can be solved in polynomial time for linear potential-based flow models. Moreover, we present a dynamic programming approach for deciding the feasibility of a booking in tree-shaped networks even for nonlinear flow models. It turns out that the hardness of the problem mainly depends on the combination of the chosen physics model as well as the specific network structure under consideration. Thus, we give an overview over all settings for which the hardness of the problem is known and finally present a list of open problems.

Keywords: Gas networks, Booking, Nomination, Computational complexity, Trees, Dynamic programming

Category 1: Applications -- OR and Management Sciences

Category 2: Other Topics (Dynamic Programming )

Category 3: Network Optimization

Citation:

Download: [PDF]

Entry Submitted: 12/06/2018
Entry Accepted: 12/06/2018
Entry Last Modified: 06/05/2019

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society