-

 

 

 




Optimization Online





 

Stabilized Barzilai-Borwein method

Oleg Burdakov (oleg.burdakov***at***liu.se)
Yu-Hong Dai (dyh***at***lsec.cc.ac.cn)
Na Huang (hna***at***cau.edu.cn)

Abstract: The Barzilai-Borwein (BB) method is a popular and efficient tool for solving large-scale unconstrained optimization problems. Its search direction is the same as for the steepest descent (Cauchy) method, but its stepsize rule is different. Owing to this, it converges much faster than the Cauchy method. A feature of the BB method is that it may generate too long steps, which throw the iterates too far away from the solution. Moreover, it may not converge, even when the objective function is strongly convex. In this paper, a stabilization technique is introduced. It consists in bounding the distance between each pair of successive iterates, which often allows for decreasing the number of BB iterations. When the BB method does not converge, our simple modification of this method makes it convergent. Under suitable assumptions, we prove its global convergence, despite the fact that no line search is involved, and only gradient values are used. Since the number of stabilization steps is proved to be finite, the stabilized version inherits the fast local convergence of the BB method. The presented results of extensive numerical experiments show that our stabilization technique often allows the BB method to solve problems in a fewer iterations, or even to solve problems where the latter fails.

Keywords: Unconstrained optimization, Spectral algorithms, Stabilization, Convergence analysis.

Category 1: Nonlinear Optimization (Unconstrained Optimization )

Citation: arXiv:1907.06409 [math.OC] 15 Jul 2019, https://arxiv.org/abs/1907.06409

Download: [PDF]

Entry Submitted: 07/20/2019
Entry Accepted: 07/20/2019
Entry Last Modified: 11/13/2019

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society