- | ||||
|
![]()
|
An approximation algorithm for multi-objective optimization problems using a box-coverage
Gabriele Eichfelder(gabriele.eichfelder Abstract: For a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this approach is to generate a polyhedron which contains the nondominated set. However, often these approximations are used for further evaluations. For those applications a polyhedron is a structure that is not easy to handle. In this paper, we introduce an approximation with a simpler structure respecting the natural ordering. In particular, we compute a box-coverage of the nondominated set. To do so, we use an approach that, in general, allows us to update not only one but several boxes whenever a new nondominated point is found. The algorithm is guaranteed to stop with a finite number of boxes, each being sufficiently thin. Keywords: multi-objective optimization, approximation algorithm, nondominated set, enclosure, box-coverage Category 1: Other Topics (Multi-Criteria Optimization ) Category 2: Global Optimization Citation: Download: [PDF] Entry Submitted: 10/29/2020 Modify/Update this entry | ||
Visitors | Authors | More about us | Links | |
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository
|
Submit Update Policies |
Coordinator's Board Classification Scheme Credits Give us feedback |
Optimization Journals, Sites, Societies | |
![]() |