Optimization Online


Copositive Duality for Discrete Markets and Games

Cheng Guo (cguo***at***mie.utoronto.ca)
Merve Bodur (bodur***at***mie.utoronto.ca)
Joshua Taylor (josh.taylor***at***utoronto.ca)

Abstract: Optimization problems with discrete decisions are nonconvex and thus lack strong duality, which limits the usefulness of tools such as shadow prices and the KKT conditions. It was shown in Burer (2009) that mixed-binary quadratic programs can be written as completely positive programs, which are convex. Completely positive reformulations of discrete optimization problems therefore have strong duality if a constraint qualification is satisfied. We apply this perspective in two ways. First, we write unit commitment in power systems as a completely positive program, and use the dual copositive program to design a new pricing mechanism. Second, we reformulate integer programming games in terms of completely positive programming, and use the KKT conditions to solve for pure strategy Nash equilibria. To facilitate implementation, we also design a cutting plane algorithm for solving copositive programs exactly.

Keywords: Copositive programming, unit commitment, integer programming game

Category 1: Applications -- OR and Management Sciences


Download: [PDF]

Entry Submitted: 01/13/2021
Entry Accepted: 01/13/2021
Entry Last Modified: 01/25/2021

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society