Optimization Online


A new perspective on low-rank optimization

Dimitris Bertsimas (dbertsim***at***mit.edu)
Ryan Cory-Wright (ryancw***at***mit.edu)
Jean Pauphilet (jpauphilet***at***london.edu)

Abstract: A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable convex relaxations. We invoke the matrix perspective function — the matrix analog of the perspective function — and characterize explicitly the convex hull of epigraphs of simple matrix convex functions under low-rank constraints. Further, we combine the matrix perspective function with orthogonal projection matrices–the matrix analog of binary variables which capture the row-space of a matrix–to develop a matrix perspective reformulation technique that reliably obtains strong relaxations for a variety of low-rank problems, including reduced rank regression, non-negative matrix factorization, and factor analysis. Moreover, we establish that these relaxations can be modeled via semidefinite constraints and thus optimized over tractably. The proposed approach parallels and generalizes the perspective reformulation technique in mixed-integer optimization and leads to new relaxations for a broad class of problems.

Keywords: Low-rank matrix; Matrix perspective function; Semidefinite optimization; Perspective reformulation technique

Category 1: Linear, Cone and Semidefinite Programming (Semi-definite Programming )

Category 2: Integer Programming ((Mixed) Integer Nonlinear Programming )

Category 3: Global Optimization (Theory )


Download: [PDF]

Entry Submitted: 05/12/2021
Entry Accepted: 05/12/2021
Entry Last Modified: 03/02/2022

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society